Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 346
1.
Lab Chip ; 24(10): 2712-2720, 2024 May 14.
Article En | MEDLINE | ID: mdl-38655620

A colorimetric biosensor was elaboratively designed for fast, sensitive and multiplex bacterial detection on a single microfluidic chip using immune magnetic nanobeads for specific bacterial separation, immune gold@platinum palladium nanoparticles for specific bacterial labeling, a finger-actuated mixer for efficient immunoreaction and two coaxial rotatable magnetic fields for magnetic nanobead capture (outer one) and magnet-actuated valve control (inner one). First, preloaded bacteria, nanobeads and nanozymes were mixed through a finger actuator to form nanobead-bacteria-nanozyme conjugates, which were captured by the outer magnetic field. After the inner magnetic field was rotated to successively wash the conjugates and push the H2O2-TMB substrate for resuspending these conjugates, colorless TMB was catalyzed into blue TMBox products, followed by color analysis using ImageJ software for bacterial determination. This simple biosensor enabled multiplex Salmonella detection as low as 9 CFU per sample in 45 min.


Biosensing Techniques , Lab-On-A-Chip Devices , Salmonella , Biosensing Techniques/instrumentation , Salmonella/isolation & purification , Colorimetry/instrumentation , Gold/chemistry , Microfluidic Analytical Techniques/instrumentation , Palladium/chemistry , Metal Nanoparticles/chemistry , Platinum/chemistry
2.
J Hazard Mater ; 470: 134113, 2024 May 15.
Article En | MEDLINE | ID: mdl-38565021

Photo-induced degradation of dimethylmercury (DMHg) is considered to be an important source for the generation of methylmercury (MMHg). However, studies on DMHg photodegradation are scarce, and it is even debatable about whether DMHg can be degraded in natural waters. Herein, we found that both DMHg and MMHg could be photodegraded in three natural waters collected from the Yellow River Delta, while in pure water only DMHg photodegradation occurred under visible light irradiation. The effects of different environmental factors on DMHg photodegradation were investigated, and the underlying mechanisms were elucidated by density functional theory calculations and a series of control experiments. Our findings revealed that the DMHg degradation rate was higher in the tidal creek water compared to Yellow River, Yan Lake, and purified water. NO3-, NO2-, and DOM could promote the photodegradation with DOM and NO3- showing particularly strong positive effects. Different light sources were employed, and UV light was found to be more effective in DMHg photodegradation. Moreover, MMHg was detected during the photodegradation of DMHg, confirming that the photochemical demethylation of DMHg is a source of MMHg in sunlit water. This work may provide a novel mechanistic insight into the DMHg photodegradation in natural waters and enrich the study of the global biogeochemical cycle of Hg.


Methylmercury Compounds , Photolysis , Water Pollutants, Chemical , Methylmercury Compounds/chemistry , Methylmercury Compounds/analysis , Methylmercury Compounds/radiation effects , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/radiation effects , Water Pollutants, Chemical/analysis , Light , Ultraviolet Rays , Nitrates/chemistry , Nitrates/analysis , Rivers/chemistry
3.
Int J Biol Macromol ; 265(Pt 1): 130959, 2024 Apr.
Article En | MEDLINE | ID: mdl-38499127

Phellinus linteus, a rare medicinal fungus, displays strong antitumor and anti-inflammatory activities because of its active metabolites, particularly polysaccharides. We investigated effects of P. linteus acidic polysaccharide (PLAP) on amelioration of dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) in a mouse model, and associated mechanisms. PLAP treatment alleviated major UC symptoms (weight loss, reduced food intake, increased disease activity index), and ameliorated histopathological colon tissue damage, reduced levels of pro-inflammatory factors (TNF-α, IL-6, IL-1ß), enhanced anti-inflammatory factor IL-10 level, reduced levels of oxidative stress-related enzymes iNOS and MPO, and enhanced expression of tight junction proteins (ZO-1, occludin, claudin-1). qPCR analysis revealed that PLAP downregulated phosphorylation levels of p65 and p38 and transcriptional level of TLR-4. High-throughput sequencing showed that PLAP restored gut microbiota diversity and species abundances in the UC model, and gas chromatographic analysis showed that it increased levels of beneficial short-chain fatty acids. Our findings indicate that PLAP has strong potential for development as an anti-UC agent based on its reduction of inflammation and oxidative stress levels, modulation of gut microbiota composition, and promotion of normal intestinal barrier function.


Basidiomycota , Colitis, Ulcerative , Colitis , Animals , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Inflammation , Disease Models, Animal , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Dextran Sulfate/adverse effects , Colon , Mice, Inbred C57BL
4.
J Hazard Mater ; 469: 133979, 2024 May 05.
Article En | MEDLINE | ID: mdl-38492396

Riverine mercury (Hg) is mainly transported to coastal areas in suspended particulate matter (SPM)-bound form, posing a potential threat to human health. Water discharge and SPM characteristics in rivers vary naturally with seasonality and can also be arbitrarily disrupted by anthropogenic regulation events, but their effects on Hg transport remain unresolved. Aiming to understand the confounding effects of seasonality and anthropogenic river regulation on Hg and SPM transport, this study selected the highly sediment-laden Yellow River as a representative conduit. Significant variations in SPM concentrations (108 - 7097 mg/L) resulted in fluctuations in total mercury (THg, 3.79 - 111 ng/L) in river water corresponding to seasonality and anthropogenic water/sediment regulation. Principal component analysis and structural equation model revealed that SPM was the essential factor controlling THg and particulate Hg (PHg) in river water. While SPM exhibited equilibrium state in the dry season, a net resuspension during the anthropogenic regulation and net deposition in the wet season demonstrated the impact of SPM dynamics on Hg distribution and transport to coastal regions. Combining water discharge, SPM, and Hg concentrations, a modified model was developed to quantify Hg flux (2256 kg), over 98% of which was in particulate phase.


Mercury , Water Pollutants, Chemical , Humans , Rivers/chemistry , Particulate Matter/analysis , Environmental Monitoring , Water Pollutants, Chemical/analysis , Mercury/analysis , Water/analysis , Dust/analysis , Oceans and Seas , Geologic Sediments/analysis
5.
Anal Chim Acta ; 1297: 342373, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38438242

In this work, a colorimetric and fluorescent dual-mode probe controlled by NH2-MIL-88 B (Fe, Ni) nanozymes was developed to visually detect tetracycline antibiotics (TCs) residues quantitatively, as well as accurately distinguish the four most widely used tetracycline analogs (tetracycline (TC), chrycline (CTC), oxytetracycline (OTC), and doxycycline (DC)). Colorless substrate 3,3',5,5'-tetramethylbenzidine (TMB) may be oxidized to blue oxidized TMB by the Fe Fenton reaction, which was catalyzed by the NH2-MIL-88 B (Fe, Ni) nanozyme with POD-like activity. The colorimetric detection system allows TCs to interact with NH2-MIL-88 B (Fe, Ni). This inhibits the production of ·OH, weakens the oxidation process of TMB, and ultimately lightens the blue color in the system by blocking the electron transfer between NH2-MIL-88 B (Fe, Ni) and H2O2. Furthermore, TCs can interact with NH2-MIL-88 B (Fe, Ni) as a result of the internal filtering effect, which causes the fluorescence intensity to decrease as TCs concentration increases. Additionally, a portable instrument that combines a smartphone sensing platform with colorimetric and fluorescent signals was created for the quick, visual quantitative detection of TCs. The colorimetric and fluorescent dual-mode nano platform enables color change, with detection limits (LODs) of 0.182 µM and 0.0668 µM for the spectrometer and smartphone sensor, respectively, based on the inhibition of fluorescence and enzyme-like activities by TCs. Overall, the colorimetric and fluorescence dual-mode sensor has good stability, high specificity, and an efficient way to eliminate false-positive issues associated with a single detection mode.


Benzidines , Deep Learning , Heterocyclic Compounds , Colorimetry , Hydrogen Peroxide , Smartphone , Tetracycline , Anti-Bacterial Agents , Fluorescent Dyes
6.
Water Res ; 253: 121332, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38377924

Photodegradation is critical to reduce the potent neurotoxic methylmercury (MeHg) in water and its subsequent accumulation along food chains. However, this process has been largely ignored in rice paddies, which are hotspots of MeHg production and receive about a quarter of the world's developed freshwater resources. Here, we reported that significant MeHg photodegradation, primarily mediated by hydroxyl radicals, occurs in the overlying water during rice growth. By incorporating field-measured light interception into a rice paddy biogeochemistry model, as well as photodegradation rates obtained from 42 paddy soils stretching ∼3500 km across China, we estimated that photodegradation reduced MeHg concentrations in paddy water and rice by 82 % and 11 %, respectively. Without photodegradation, paddy water could be a significant MeHg source for downstream ecosystems, with an annual export of 178 - 856 kg MeHg to downstream waters in China, the largest rice producer. These findings suggest that photodegradation in paddy water is critical for preventing greater quantities of MeHg entering human food webs.


Mercury , Methylmercury Compounds , Oryza , Soil Pollutants , Humans , Mercury/analysis , Ecosystem , Water , Photolysis , Soil Pollutants/analysis , Environmental Monitoring , Soil , Oryza/metabolism
7.
J Hazard Mater ; 468: 133811, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38382341

Chlorine and its derivatives, such as sodium hypochlorite (NaClO) and chlorine dioxide, are frequently employed as disinfectants throughout the pork supply chain in China. Nevertheless, the extensive use of NaClO has the potential to cause the creation of 'chlorine-tolerant bacteria' and accelerate the evolution of antibiotic resistance. This study evaluated the efficacy of NaClO disinfection by examining alterations in the microbiome and resistome of a pork wholesale market (PWM), and bacteria isolation and analysis were performed to validate the findings. As expected, the taxonomic compositions of bacteria was significantly different before and after disinfection. Notably, Salmonella enterica (S. enterica), Salmonella bongori (S. bongori), Escherichia coli (E. coli), Klebsiella pneumoniae (K. pneumoniae), and Pseudomonas aeruginosa (P. aeruginosa) were observed on all surfaces, indicating that the application of NaClO disinfection treatment in PWM environments for pathogenic bacteria is limited. Correlations were identified between antibiotic resistance genes (ARGs) associated with aminoglycosides (aph(3'')-I, aph(6')-I), quinolone (qnrB, abaQ), polymyxin (arnA, mcr-4) and disinfectant resistance genes (emrA/BD, mdtA/B/C/E/F). Furthermore, correlations were found between risk Rank I ARGs associated with aminoglycoside (aph(3')-I), tetracycline (tetH), beta_lactam (TEM-171), and disinfectant resistance genes (mdtB/C/E/F, emrA, acrB, qacG). Importantly, we found that Acinetobacter and Salmonella were the main hosts of disinfectant resistance genes. The resistance mechanisms of the ARGs identified in PWM were dominated by antibiotic deactivation (38.7%), antibiotic efflux (27.2%), and antibiotic target protection (14.4%). The proportion of genes encoding efflux pumps in the PWM resistome increased after disinfection. Microbial cultures demonstrated that the traits of microbial contamination and antibiotic resistane were consistent with those observed by metagenomic sequencing. This study highlights the possibility of cross-resistance between NaClO disinfectants and antibiotics, which should not be ignored.


Disinfectants , Pork Meat , Red Meat , Swine , Animals , Anti-Bacterial Agents/pharmacology , Disinfection , Sodium Hypochlorite , Escherichia coli , Chlorine/pharmacology , Disinfectants/pharmacology , Bacteria/genetics , Aminoglycosides , Halogens
8.
Environ Pollut ; 346: 123554, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38395130

In the past few decades, mercury (Hg) discharged into the coastal bays of China has significantly increased; however, long-term trends regarding the pollution status and sources of Hg in these bays have yet to be clear. Focusing on this issue, surface sediments and core sediments were collected in the Jiaozhou Bay (JZB), a typical bay highly affected by human activities in China, to analyze the concentrations and stable isotopic composition of Hg. Total mercury (THg) concentrations in surface sediment varied from 7 to 163 ng/g, with higher levels located in the eastern JZB, possibly attributed to intensive industrial and population density. THg in sediment cores 14 and 20 displayed fluctuating increasing trends from 1936 to 2019, reflecting the deterioration of Hg pollution. In contrast, THg in sediment core 28 near the river mouth exhibited a declining trend, possibly due to the river dam construction. Using a stable isotope mixing model, contributions of various sources (atmospheric, riverine, and industrial emissions) to Hg in the JZB were estimated. The results showed that industrial emissions were the main source (over 50%) of mercury in the JZB in 2019. Sediment cores recorded an increase in industrial Hg due to early industrialization and Reform and Opening-up before 2000. In addition, sediment core 20 demonstrated a rise in the percentage of riverine Hg due to land reclamation at the bay's mouth during 2000-2007.


Mercury , Water Pollutants, Chemical , Humans , Mercury/analysis , Bays , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Geologic Sediments , Isotopes , China
9.
Article En | MEDLINE | ID: mdl-38375837

BACKGROUND: Renal tubular epithelial cells (RTECs) senescence is crucial in kidney diseases. Icariin is shown to have protective effects against renal fibrosis, acute kidney injury, and proteinuria. We aimed to explore the role of icariin in protecting RTECs from senescence and the underlying mechanism involved. METHODS: An in vitro model of RTEC senescence was established by incubating HK-2 cells with urine exosomes from patients with diabetic kidney disease. Stimulated cells were treated with icariin at various doses to evaluate the compound's therapeutic effects. After RNA transfection, cell cycle arrest and senescence, flow cytometry, and SA-ß-Gal staining were analyzed. At the same time, quantitative real-time PCR examined microRNA expression. Biochemical assays. RESULTS: Urine exosomes induced senescence and cell cycle arrest in the G1 stage in HK-2 cells, which were inhibited by icariin. Urine exosome stimulation up-regulated miR-23b-3p expression, which in turn suppressed PAK2 expression. Significantly, the induced and inhibited miR- 23b-3p expressions weakened and augmented the resistance of cells against urine exosome stimulation, respectively, while PAK2 overexpression provided additional protection. Icariin suppressed miR-23b-3p expression, and miR-23b-3p induction blocked the effects of icariin and promoted RTEC senescence. CONCLUSION: miR-23b-3p and PAK2 form a signaling axis that regulates RTEC senescence upon urine exosome stimulation. Icariin can increase the resistance of RTECs against senescence via miR-23b-3p/PAK2. Our findings shed light on the mechanism of the clinical effects of icariin on renal diseases, which can be exploited to develop effective drugs targeting RTEC senescence in the future.

10.
Opt Express ; 32(2): 1465-1477, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38297697

High power and high brightness laser lighting puts forward new requirements for phosphor converters such as high luminous efficiency, high thermal conductivity and high saturation threshold due to the severe thermal effect. The structure design of phosphor converters is proposed as what we believe to be a novel strategy for less heat production and more heat conduction. In this work, the rod-shaped YAG:Ce phosphor ceramics (PCs) and disc-shaped YAG:Ce PCs as control group were fabricated by the gel casting and vacuum sintering, to comparatively study the luminescence performance for LD lighting, on the premise that the total number of transverse Ce3+ ions and the volume of samples from two comparison groups were same. All rod YAG:Ce PCs with low Ce3+ concentration exhibited the high luminous efficiency and better thermal stability than YAG:Ce discs with high Ce3+ concentration. Under the laser power density of 47.8 W/mm2, the luminous saturation was never observed in all rod-shaped YAG:Ce PCs. The high luminous efficacy of 245∼274 lm/W, CRI of 56.3∼59.5 and CCT of 4509∼4478 K were achieved. More importantly, due to the extremely low Ce3+ doping concentration (0.01 at%), rod-shaped ceramics based LDs devices showed the excellent thermal performance and their surface temperatures were even below 30.5 °C surprisingly under the laser power density of 20.3 W·mm-2 (2 W). These results indicate that the rod shape of phosphor converter is a promising structure engineering for high power laser lighting.

11.
Opt Express ; 32(2): 2644-2657, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38297788

Lu3Al5O12:Ce (LuAG:Ce) phosphor ceramics (PCs) with the excellent thermal stability and high saturation threshold are considered as the best green-fluorescent converters for high-power laser diodes (LDs) lighting. In this study, the effects of sintering additives and sintering processes on the transmittance and microstructure of LuAG:Ce PCs were systematically studied, and the luminescence performance of ceramics with different transmittance was compared. LuAG:Ce PCs with the transmittance of 80% (@800 nm, 1.5 mm) were obtained by using 0.1 wt.% MgO and 0.5 wt.% TEOS as sintering additives, combined with optimized vacuum pre-sintering and hot isostatic pressing. Compared to the non-HIP samples, the transmittance had increased by 11%. The microstructure of ceramics indicated that high transparency was closely related to the decrease in intergranular pores. Notably, the luminous efficiency of 253 lm/W and its saturation thresholds of > 46 W/mm2 were obtained simultaneously in green-emitting LDs devices. Moreover, under 3W laser irradiation, highly transparent ceramics had the low surface temperature of 66.4 °C, indicating the good heat dissipation performance. The observed high luminous efficiency and high saturation threshold of LuAG:Ce PCs were attributed to fewer pores and oxygen vacancies. Therefore, this work proves that highly transparent LuAG:Ce PCs are promising green-fluorescent converters for high-power LDs lighting.

12.
Water Res ; 251: 121112, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38198975

Mercury (Hg) is among the most concerned contaminants in the world due to its high toxicity, prevalent existence in the environments, and bioaccumulation via food chain. Methylmercury (MeHg) is the major form of Hg that accumulates along the food chain and poses threat to humans and wild life. Photodegradation is the dominant process that MeHg is eliminated from freshwater system and upper ocean. The formation of MeHg-dissolved organic matter (DOM) complexes and a variety of free radicals (FR)/reactive oxygen species (ROS) have been previously proposed to be involved in MeHg photodegradation. However, most of these studies were conducted in freshwater, and the mechanism of MeHg photodegradation in seawater remains unclear. In this study, the main pathways of MeHg photodegradation in the seawater of Yellow Sea (YS) and East China Sea (ECS) were investigated using FR/ ROS scavenger addition and DOM competing-ligand addition techniques. The results showed that direct photodegradation of MeHg-DOM complexes is the major pathway of MeHg photodegradation in the YS and ECS, while indirect photolysis of MeHg by hydroxyl radical (·OH) also plays a certain role at some sites. MeHg photodegradation was found to be mainly induced by ultraviolet (UV) light rather than visible light in YS and ECS seawater, and the contribution of UV-B was higher than UV-A which was opposite to that previously reported in freshwater. The energy for breaking the bond of CHg in MeHg-Cl complexes formed in seawater is higher than that in MeHg-DOM complexes and this may cause the relatively greater contribution of UV-B with higher energy to MeHg photodegradation in seawater. In addition, MeHg photodegradation in various fractions of natural DOM with different molecular weights, hydrophilicity/hydrophobicity and acid-base was tested. MeHg photodegradation rates (kd) varied in these fractions and kd in high molecular weight DOM and hydrophobic Acid (HOA) fractions were faster than that in the other fractions. A significantly positive correlation was observed between kd and thiol concentrations while there was no significant correlation between kd and other measured parameters representing the composition of DOM (specific UV absorbance at 254 nm (SUVA254), spectral slope (SR), chromophoric dissolved organic matter (CDOM), humification index (HIX), biological index (BIX) and fluorescent components). These results indicate that thiol may be the key functional group in DOM affecting the photodegradation of MeHg in the YS and ECS.


Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Humans , Methylmercury Compounds/chemistry , Photolysis , Dissolved Organic Matter , Reactive Oxygen Species , Mercury/chemistry , Sunlight , Free Radicals , Sulfhydryl Compounds/chemistry , China , Water Pollutants, Chemical/chemistry
13.
Proc Natl Acad Sci U S A ; 121(3): e2312680121, 2024 Jan 16.
Article En | MEDLINE | ID: mdl-38194462

Periodic spin-orbit motion is ubiquitous in nature, observed from electrons orbiting nuclei to spinning planets orbiting the Sun. Achieving autonomous periodic orbiting motions, along circular and noncircular paths, in soft mobile robotics is crucial for adaptive and intelligent exploration of unknown environments-a grand challenge yet to be accomplished. Here, we report leveraging a closed-loop twisted ring topology with a defect for an autonomous soft robot capable of achieving periodic spin-orbiting motions with programmed circular and re-programmed irregular-shaped trajectories. Constructed by bonding a twisted liquid crystal elastomer ribbon into a closed-loop ring topology, the robot exhibits three coupled periodic self-motions in response to constant temperature or constant light sources: inside-out flipping, self-spinning around the ring center, and self-orbiting around a point outside the ring. The coupled spinning and orbiting motions share the same direction and period. The spinning or orbiting direction depends on the twisting chirality, while the orbital radius and period are determined by the twisted ring geometry and thermal actuation. The flip-spin and orbiting motions arise from the twisted ring topology and a bonding site defect that breaks the force symmetry, respectively. By utilizing the twisting-encoded autonomous flip-spin-orbit motions, we showcase the robot's potential for intelligently mapping the geometric boundaries of unknown confined spaces, including convex shapes like circles, squares, triangles, and pentagons and concaves shapes with multi-robots, as well as health monitoring of unknown confined spaces with boundary damages.

14.
Science ; 383(6679): 212-219, 2024 Jan 12.
Article En | MEDLINE | ID: mdl-38207038

We expand the concept of epitaxy to a regime of "twisted epitaxy" with the epilayer crystal orientation between two substrates influenced by their relative orientation. We annealed nanometer-thick gold (Au) nanoparticles between two substrates of exfoliated hexagonal molybdenum disulfide (MoS2) with varying orientation of their basal planes with a mutual twist angle ranging from 0° to 60°. Transmission electron microscopy studies show that Au aligns midway between the top and bottom MoS2 when the twist angle of the bilayer is small (<~7°). For larger twist angles, Au has only a small misorientation with the bottom MoS2 that varies approximately sinusoidally with twist angle of the bilayer MoS2. Four-dimensional scanning transmission electron microscopy analysis further reveals a periodic strain variation (<|±0.5%|) in the Au nanodisks associated with the twisted epitaxy, consistent with the Moiré registry of the two MoS2 twisted layers.

15.
Proc Natl Acad Sci U S A ; 121(4): e2314454121, 2024 Jan 23.
Article En | MEDLINE | ID: mdl-38232283

The discoveries of ferromagnetism down to the atomically thin limit in van der Waals (vdW) crystals by mechanical exfoliation have enriched the family of magnetic thin films [C. Gong et al., Nature 546, 265-269 (2017) and B. Huang et al., Nature 546, 270-273 (2017)]. However, compared to the study of traditional magnetic thin films by physical deposition methods, the toolbox of the vdW crystals based on mechanical exfoliation and transfer suffers from low yield and ambient corrosion problem and now is facing new challenges to study magnetism. For example, the formation of magnetic superlattice is difficult in vdW crystals, which limits the study of the interlayer interaction in vdW crystals [M. Gibertini, M. Koperski, A. F. Morpurgo, K. S. Novoselov, Nat. Nanotechnol. 14, 408-419 (2019)]. Here, we report a strategy of interlayer engineering of the magnetic vdW crystal Fe3GeTe2 (FGT) by intercalating quaternary ammonium cations into the vdW spacing. Both three-dimensional (3D) vdW superlattice and two-dimensional (2D) vdW monolayer can be formed by using this method based on the amount of intercalant. On the one hand, the FGT superlattice shows a strong 3D critical behavior with a decreased coercivity and increased domain wall size, attributed to the co-engineering of the anisotropy, exchange interaction, and electron doping by intercalation. On the other hand, the 2D vdW few layers obtained by over-intercalation are capped with organic molecules from the bulk crystal, which not only enhances the ferromagnetic transition temperature (TC), but also substantially protects the thin samples from degradation, thus allowing the preparation of large-scale FGT ink in ambient environment.

16.
Environ Sci Technol ; 57(49): 20595-20604, 2023 Dec 12.
Article En | MEDLINE | ID: mdl-38007712

Microbial reduction plays a crucial role in Hg redox and the global cycle. Although intracellular Hg(II) reduction mediated by MerA protein is well documented, it is still unclear whether or how bacteria reduce Hg(II) extracellularly without its internalization. Herein, for the first time, we discovered the extracellular reduction of Hg(II) by a widely distributed aerobic marine bacterium Alteromonas sp. KD01 through a superoxide-dependent mechanism. The generation of superoxide by Alteromonas sp. KD01 was determined using 3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide and methyl cypridina luciferin analogue as probes via UV-vis and chemiluminescence detection, respectively. The results demonstrated that Hg(II) reduction was inhibited by superoxide scavengers (superoxide dismutase (SOD) and Cu(NO3)2) or inhibitors of reduced nicotinamide adenine dinucleotide (NADH) oxidoreductases. In contrast, the addition of NADH significantly improved superoxide generation and, in turn, Hg(II) reduction. Direct evidence of superoxide-mediated Hg(II) reduction was provided by the addition of superoxide using KO2 in deionized water and seawater. Moreover, we observed that even superoxide at an environmental concentration of 9.6 ± 0.5 nM from Alteromonas sp. KD01 (5.4 × 106 cells mL-1) was capable of significantly reducing Hg(II). Our findings provide a greater understanding of Hg(II) reduction by superoxide from heterotrophic bacteria and eukaryotic phytoplankton in diverse aerobic environments, including surface water, sediment, and soil.


Alteromonas , Mercury , Superoxides/metabolism , Alteromonas/metabolism , NAD/metabolism , Bacteria/metabolism , Water
17.
iScience ; 26(11): 108245, 2023 Nov 17.
Article En | MEDLINE | ID: mdl-38026200

Pathogen testing is effective to prevent food poisoning. Here, an electrochemical biosensor was explored for Salmonella detection by combining magnetic grid based bacterial separation with enzymatic catalysis based signal amplification on a PCB interdigitated electrode in a microfluidic chip. First, immune magnetic nanobeads, target bacteria, and immune polystyrene microspheres decorated with glucose oxidase were sufficiently mixed to form nanobead-bacteria-microsphere sandwich conjugates. Then, these conjugates were injected into the chip to form conjugate chains right over the electrode under an iron grid enhanced magnetic field. After non-conductive glucose was injected and catalyzed by glucose oxidase on the conjugate chains, conductive glucose acid and non-conductive hydrogen peroxide were continuously produced and rapidly diffused from the conjugate chains to the electrode. Finally, the impedance change was real-timely monitored and used to determine the bacterial amount. This sensor enabled detection of 50 CFU/mL Salmonella typhimurium in 1 h.

18.
Plants (Basel) ; 12(22)2023 Nov 15.
Article En | MEDLINE | ID: mdl-38005761

The improvement of the simulation accuracy of crop models in different greenhouse environments would be better applied to the automation management of greenhouse cultivation. Tomatoes under drip irrigation in a greenhouse were taken as the research object, and the cumulative evaporation capacity (Ep) of the 20 cm standard evaporation dish was taken as the basis for irrigation. Three treatments were set up in the experiment: high water treatment without mulch (NM-0.9 Ep), high water treatment with mulch (M-0.9 Ep), and low water treatment with mulch (M-0.5 Ep). AquaCrop and DSSAT models were used to simulate the canopy coverage, soil water content, biomass, and yield of the tomatoes. Data from 2020 were used to correct the model, and simulation results from 2021 were analyzed in this paper. The results showed that: (1) Of the two crop models, the simulation accuracy of the greenhouse tomato canopy coverage kCC was higher, and the root mean square errors were less than 6.8% (AquaCrop model) and 8.5% (DSSAT model); (2) The AquaCrop model could accurately simulate soil water change under high water treatments, while the DSSAT model was more suitable for the conditions without mulch; (3) The relative error RE of simulated and observed values for biomass B, yield Y, and water use efficiency WUE in the AquaCrop model were less than 2.0%, 2.3%, and 9.0%, respectively, while those of the DSSAT model were less than 4.7%, 7.6%, and 10.4%, respectively; (4) Considering the simulation results of each index comprehensively, the AquaCrop model was superior to the DSSAT model; subsequently, the former was used to predict 16 different water and film coating treatments (S1-S16). It was found that the greenhouse tomato yield and WUE were the highest under S7 (0.8 Ep), at 8.201 t/ha and 2.79 kg/m3, respectively.

19.
BMC Geriatr ; 23(1): 780, 2023 11 28.
Article En | MEDLINE | ID: mdl-38017397

BACKGROUND: Phenotypic age acceleration, which reflects the difference between phenotypic age and chronological age, is an assessment to measure accelerated aging. Klotho is a protein related to slower aging, but its association with accelerated aging remains unclear. METHODS: Based on data from the 2007-2010 National Health and Nutrition Examination Survey, phenotypic age was calculated using chronological age and 9 aging-related biomarkers. A total of 4388 participants aged 40 to 79 years with measured serum Klotho and calculated phenotypic age were enrolled. The association between serum Klotho and phenotypic age acceleration was estimated using multivariable linear regression models. The possible nonlinear relationship was examined with smooth curve fitting. We also conducted a segmented regression model to examine the threshold effect. RESULTS: The association between serum Klotho and phenotypic age acceleration followed a U-shaped curve (p for nonlinearity < 0.001), with the inflection point at 870.7 pg/ml. The phenotypic age acceleration significantly decreased with the increment of serum Klotho (per SD increment: ß -1.77; 95% CI, -2.57 ~ -0.98) in participants with serum Klotho < 870.7 pg/ml, and increased with the increment of serum Klotho (per SD increment:ß, 1.03; 95% CI: 0.53 ~ 1.54) in participants with serum Klotho ≥ 870.7 pg/ml. CONCLUSION: There was a U-shaped association between serum Klotho and accelerated aging among the middle-aged and elderly US population.


Aging , Glucuronidase , Aged , Humans , Middle Aged , Biomarkers , Cross-Sectional Studies , Nutrition Surveys
20.
Environ Sci Technol ; 57(48): 19772-19781, 2023 Dec 05.
Article En | MEDLINE | ID: mdl-37932229

Particulate HgS play crucial roles in the mercury (Hg) cycle. Approximately 20-90% of dissolved Hg can be transformed into particulate HgS by algae. However, detailed knowledge regarding these particles, including sizes and distribution, remains unknown. The present study explored the formation, distribution, and excretion of mercury nanoparticles (HgNPs) in diatom Chaetoceros curvisetus. The results demonstrated that HgNPs (HgS nanoparticles, 29.6-66.2 nm) formed intracellularly upon exposure to 5.0-100.0 µg L-1 Hg(II), accounting for 12-27% of the total Hg. HgNP concentrations significantly increased with increasing intracellular Hg(II) concentrations, while their sizes remained unaffected. HgNPs formed intracellularly and partly accumulated inside the cells (7-11%). Subsequently, the sizes of intracellular HgNPs gradually decreased to facilitate expulsion, 21-50% of which were excreted. These suggested the vital roles of HgNPs in comprehending marine Hg fate. Their unique physicochemical properties and bioavailability would influence Hg biotransformation in the ocean. Additionally, both intracellular and extracellular HgNPs contributed to Hg settling with cells, ultimately leading to Hg burial in sediments. Overall, these findings further deepened our understanding of Hg biotransformation and posed challenges in accurately estimating marine Hg flux and Hg burial.


Diatoms , Mercury , Nanoparticles , Water Pollutants, Chemical , Mercury/analysis , Diatoms/metabolism , Water Pollutants, Chemical/analysis , Biotransformation , Nanoparticles/chemistry
...